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INTERNATIONAL
Standard Practice for
99 %/95 % Interlaboratory Detection Estimate (IDE) for
Analytical Methods with Negligible Calibration Error 1
This standard is issued under the fixed designation D 6091; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilonef indicates an editorial change since the last revision or reapproval.

1. Scope 1.3.4 Low Probability of False DetectieA-The IDE is a

1.1 This practice establishes a standard for computing Hue concentrz_ition consistent with a meas_ured c_oncentrgition
99 %/95 % Interlaboratory Detection Estimate (IDE) and pro-threshold (critical measured value) that will provide a high
vides guidance concerning the appropriate use and applicatioRfobability, 99 %, of true nondetection (a low probability of

1.2 The IDE is computed to be the lowest concentration atélse detection,a =1 9%). Thus, when measuring a blank
which there is 90 % confidence that a single measurement frof@MPple, the probability of not detecting the analyte would be
a laboratory selected from the population of qualified labora99 %- To be useful, this must be demonstrated for the particular
tories represented in an interlaboratory study will have a truénatrix being used, and not just for reagent water.
detection probability of at least 95 % and a true nondetection 1.3.5Low Probability of False NondetectienThe IDE
probability of at least 99 % (when measuring a blank sample)Should be a true concentration at which there is a high

1.3 The fundamental assumption of the collaborative studyrobability, at least 95 %, of true detection (a low probability
is that the media tested, the concentrations tested, and tif false nondetection =5 %, at the IDE), with a simulta-
protocol followed in the study provide a representative and faif*€ous low probability of false detection (see 1.3.4). Thus, when
evaluation of the scope and applicability of the test method ag'éasuring a sample at the IDE, the probability of detection
written. When properly applied, the IDE procedure ensures thavould be at.least 95 %. To b_e useful, this must pe demonstrated
the 99 %/95 % IDE has the following properties: for the particular matrix being used, and not just for reagent

1.3.1 Routinely Achievable IDE ValueMost laboratories Water.
are able to attain the IDE detection performance in routine Nore 1—The referenced probabilities,andp, are key parameters for
analyses, using a standard measurement system, at reasonablebased assessment of a detection limit.

cost._This property is needed _for a detecti_on limit to b_e 1.4 The IDE applies to measurement methods for which
practically feasible. Representative laboratories must be insgjinration error is minor relative to other sources, such as

cluded in the data to calculate the IDE. when the dominant source of variation is one of the following
1.3.2 Routine Sources of Error Accounted feifThe IDE (with comment):

should realistically include sources of bias and variation which' 1 4 ¢ Sample Preparatignand calibration standards do not
are common to the measurement process. These SOUrGgS e to go through sample preparation.
include, but are not limited to: intrinsic instrument noise, some 1 4 2 pifferences in Analystand analysts have little oppor-

typical amount of carryover error, plus differences in laboraynity o affect calibration results (such as with automated
tories, analysts, sample preparation, and instruments. calibration).

1.3.3 Avoidable Sources of Error Excludedrhe IDE 1.4.3 Differences in Laboratoriesfor whatever reasons,
should realistically exclude avoidable sources of bias an erhaps difficult to identify and eliminate.
variation, that is, those which can reasonably be avoided in 1 4 4 pifferences in Instrumentgmeasurement equipment)
routine field measurements. Avoidable sources would include,nich could take the form of differences in manufacturér
but are not limited to: modifications to the sam?ler,] me"’ll,s“refnodel, hardware, electronics, sampling rate, chemical process-
ment procedure, or measurement equipment of the validatgfly rate  integration time, software algorithms, internal signal
methpd, and gross and easily discernible transcription error ocessing and thresholds, effective sample volume, and con-
(provided there was a way to detect and either correct of;mination level
eliminate them). 1.5 Alternative Data Quality ObjectivesOther values
- fora, B, confidence, etc. may be chosen for calculating an IDE;
1 This practice is under the jurisdiction of ASTM Committee D19 on Water and however, this procedure addresses only the 99 %/95 % IDE.
is the direct responsibility of Subcommittee D19.02 on General Specifications,
Technical Resources, and Statistical Methods. 2. Referenced Documents

Current edition approved Aug. 10, 2003. Published September 2003. Originally .
approved in 1997. Last previous edition approved in 1997 as D 6091 — 97. 2.1 ASTM Standards:
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FIG. 1 Simplest Case of Reliable Detection

D 2777 Practice for the Determination of Precision and Biads often referred to as the Type 1 error probability and depends
of Applicable Test Methods of Committee D19 on Water on the analyte, measurement system, analytical method, ma-
] trix, analyst, and measurement (recovery) threshold (measure-
3. Terminology ment critical value) used to decide whether detection has
3.1 Definitions: occurred. This definition can be generalized to refer to un-
3.1.1 99 %/95 % Interlaboratory Detection Estimate (99 %/ wanted detection from a single measurement of a sample at any
95 % IDE, also denoted LD for Limit of Detection in accor- nonzero concentration of the analyte rather than a blank
dance with Currie(1)®>—The lowest concentration at which sample, provided that the nonzero concentration is less than the
there is 90 % confidence that a single measurement from detection limit or IDE.
laboratory selected from the population of qualified laborato- 32 4 probability of False NondetectiorThe false nega-
ries represented in an interlaboratory study will have a trugjye probability, denoteg@ or p (T), that a single measurement
detection probability of at least 95 % and a true nondetectionf 3 sample containing a nonzero concentratidn,of an
probability of at least 99 %. _ analyte of interest will result in a nondetection. This is the
3.2 Definitions of Terms Specific to This Standard: complement of the probability of true detection. (See Fig. 1.)
3.2.1 Censored MeasurementA measurement that is not Thjs probability function is often referred to as the Type 2 error
reported numerically nor is reported missing but as a nondetegjrobability function, and it depends explicitly on the concen-
or a less-than, for example, “less than 0.1 ppb.” The formefration (T). It depends implicitly on the analyte, measurement

means that an algorithm in the measurement system dete§ystem, analytical method, matrix, analyst, and critical value
mined that the measurement should not be reported numefig, detection.

cally for one of two reasons: either it was considered not 5, g Probability of True Detection-The probability, de-

sufficiently precise or accurate, or the identification of thenoted 18 or 18 (T, that a single measurement of a sample

analyte was suspect. A reported less-than may have the SarI‘:'Sntaining a nonzero concentratidn,of an analyte of interest

meanintg, tt.)Ut it aI?o itrrr:plies (perr}zipstherroneously) 'ghat aw\/ill result in a detection. (See Fig. 1.) This probability is often
concentration greater than or equal to the accompanying valy&se e to as statistical power or the power of detection, and it

(for example, 0.1 ppb) can be measured and will be reporte epends explicitly on the concentration).(It depends implic-

numerically. . ;
. - . . itly on the analyte, measurement system, analytical method,
3.2.2 Detection Limit (DL) or Limit of Detection (LB}-A matrix, analyst, and critical value for detection.

numerical value, expressed in physical units or proportion, . . .
intended to represent the lowest level of reliable detection (a 3.2.6.I_3robab|I|ty of True Non_detecuenThe true negative
robability, denoted v, that a single measurement of a blank

level which can be discriminated from zero with high prob—p

ability while simultaneously allowing high probability of S&MPle will resultin a nondetection. This is the complement of
nondyetection when blank sgmples arg megasurr)ed. y the probability of false detection. (See Fig. 1.) This probability
also depends on the analyte, measurement system, analytical

Note 2—In some cases, the discrimination may be from a value otheinethod, matrix, analyst, and response threshold. The probabil-
than zero, such as a background level. Note also that a DL also depenﬁ§, of true nondetection can be similarly generalized: it can
on other characteristics of the measurement and detection process, suc lv to a single measurement of a sample at anv nonzero
described in 1.3.2. The IDE is an example of a DL. y . 9 . S P y

- _ - concentration less than the detection limit or IDE.
3.2.3_I_Drobab|I|ty of False I_Detectmn—The false positive 3.2.7 100(1+y) %—Confidence Statistical Tolerance Limit
probablhty, denotgdx, that a_smgle measurement of a bI"’Tr.]kfor 100(19) % of a Population (also known as a One-Sided
sample will result in a detection. (See Fig. 1.) This prOl:’ab'I'tyStatisticaI Tolerance Intervah-A statistically determined limit
that will, with 100(1+) % confidence, exceed (or fall below)
0, 1 0 1

2 Annual Book of ASTM Standagdéol 11,01, 100(19) % of the population (the 100(&) /o quantile). See

3 The boldface numbers in parentheses refer to the list of references at the end kahn and Meeke(2) for further explanation and tables of
this standard. values.
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4. Summary of Practice detection of low-level concentrations of the same analyte as the

} - ~one studied in this practice and same media (matrix).
4.1 Every ASTM D-19 test method is evaluated to deter 5.2 The IDE values may be used to compare the detection

mine precision and bias by conducting a collaborative study in ower of different methods for analysis of the same analyte in

accordance with Practice D 2777. That study, or a similaf’ ;
the same matrix.

collaborative study, can also be used to evaluate the lowest . . . .
concentration level of reliable detection for a test method 53 The IDE provides high probability '(apprquately
95 %) that result values of the method studied which exceed

referred to herein as the Interlaboratory Detection Estimatethe IDE represent presence of analyte in the sample and high

Such a study must include concentrations suitable for mOde”nBrobability (approximately 99 %) that blank samples will not

the uncertainty of mean recovery of interlaboratory measUrezaq it in a detection.

ment (preferably without extrapolation). It must also be g4 The |DE procedure should be used to establish the
planned and conducted to allow the known, routine Sourcesoﬁterlaboratory detection capability for any application of a

measurement variability to be observed at typical levels of,aihqq where interlaboratory detection is important to data
influence. After it is conducted, outlying laboratories and s The intent of IDE is not to set reporting limits.

individual measurements should be eliminated using an ac-
cepted, scientifically based procedure for outlier removal, suc. procedure

as found in PraCt'Ce D2777. The IDE.cqmputanons must be 6.1 The procedure described as follows has stages described
pased on retained data_ from at least six independent Iaborat%-the following sections: IDE Study Plan, Design and Protocol
ries at each concentration level. 6.2); Conduct the IDE Study, Screen the Data, and Choose a

4.2 Retained data are analyzed to identify and fit one ojodel (6.3); and Compute the IDE (6.4). A flowchart of the
three proposed interlaboratory standard deviation (ILSD) modprocedure is shown in Fig. 2.

els which describe the relationship between the interlaboratory 6 2 |DE Study Plan, Design, and Protocol
standard deviation of measurements and the true concentration.g 2.1 Choose Analyte, Matrix, and MetheeAt least one
The identification process involves evaluating the models iynalyte of interest is selected, typically one for which there is
order, from simplest to most complex: constant, straight-linejnterest in trace levels of concentration, such as toxic materials
or exponential (all with respect to true concentratidf),  that are controlled and regulated. For each analyte, an approxi-
Evaluation includes statistical significance and residual analymate maximum true concentration is selected based on the
sis. following considerations:

4.3 The chosen model is used to predict interlaboratory
measurement standard deviation at any true concentration
within the study concentration range. If interlaboratory stan-|[IDE Study Pian, Design and Protocol {see 6.2) |
dard deviation is not constant, the predictions are used tg Y
generate weights for fitting the mean recovery relationship (the [Cheoe analyte. matrix and method (sce 621 |
Straight_line relationShip between measured concentration anfi Choose IDE stugy design and protocol, based on anticipated interlab
true concentration), using weighted least squares (otherwise, |standard deviation model (see 6.2.2)
ordinary least squares is used). The mean recovery curve is y
evaluated for statistical significance and lack of fit and using| |Chocse Protocol (see6.23) |

. . .. . 4
residual analysis. An ILSD model prediction is also used to [Choose Allowable Sources of Variation (see 6.2.4)|

estimate the interlaboratory standard deviation of measure} U
ments of blanks. This estimate is used to comp¥te a [Conduct the IDE Study, Screen the Data, and Choose Madels (see 6.3)]
measurement critical value for detection (see 6.4.1). YGé&s Y

. . . . Study, following ASTM D 2777 6.3.1
the value that with approximately 90 % confidence will not be | (Cenductthe “'Uy o (se 831 |

exceeded by 99 % of all measurements of blanks made bY  [screen the dat, following ASTM b 2777 (see 63.2}]

qualified laboratories as represented in the study. T@e U
computed fromYC is the true concentration with expected Identify and Fit the Interlab Std. Dev. Model (see 6.3.3)
. Evaluate Models for measurement interlab std.dev. as a
measurement equal ¥C(see 6.4.2). The model is also used to function of true concentration, in order:
predict interlaboratory standard deviation at nonzero concen A: constant B: straightline _C: exponential
trations. The ID.E is dlrectlly or |terat|yely computed to t_)e the [Fitthe Wean Recovery Wodel (505 6.34) |
true concentration that with approximately 90 % confidence '
will produce measurements that will exce¥@ at least 95 %  |[Compute the IDE (see 6.4) |
of the time and simultaneously not exceed more than 1 % of y

|Compute the recovery critical value, YC (see 6.4.1) 1

4
|?20mpute LC, the true concentration critical value (see 6.4.2) |

5. Significance and Use '

5.1 Appropriate application of this practice should result in | [TMedelAt "seu": compute IDE=LD directly (se0 643

an IDE aChievable by most |ab9rat0ries pro_perly USing the tes |If Model B or C is used: compute LD iteratively, then set IDE = LD (see 6.4.4) |
method studied. This IDE provides the basis for any prospec
tive use of the test method by qualified laboratories for reliable FIG. 2 Flowchart of IDE Procedure

the time when blank samples are measured.
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6.2.1.1 The anticipated IDE should be exceeded by a factgoroblems with carryover, study cost (in time and money), and
of 2 or more, time constants of measurement system drift or sample degra-

6.2.1.2 Asingle model (ideally a straight-line model in true dation.
concentration]) should describe mean recovery from zero to 6.2.3.1 For purposes of the collaborative study, the study
that maximum concentration, supervisor should provide instructions to participating labora-

6.2.1.3 Asingle model in true concentration should describéories to disable (if possible) any internal measurement system
interlaboratory measurement standard deviation from zero tthresholds (such as an instrument detection limit or peak-area
that maximum concentration, and threshold) that are used to determine whether a numerical

6.2.1.4 The range must be sufficient to enable statisticallyn€asurementis to be reported as a nondetect or less-than, or as
significant coefficients to be estimated for the ILSD model and® humber (censoring). If censoring is unavoidable, the labora-
mean recovery model. One or more matrices of interest are ald8"y censoring threshold must be reported with its study data.
selected, and an accepted standard analytical method for thos@wever, qualitative criteria used by the method to identify
analytes is selected for study. If there is no possibility of matrix@nd discriminate analytes are separate criteria and must be
interference, then it may only be necessary to determine a lisitisfied according to the method.
of acceptable matrices which can be used instead of selecting6.2.4 Choose Allowable Sources of Variatiet is assumed
a specific matrix. For example, for a particular analytethat collectively the many sources of variation will contribute
concentration range, and method it may be supposed th#® cause interlaboratory measurements at any true concentra-
reagent waters from different laboratories are indistinguishtion to be normally distributed. Representative between-
able, but for another analyte or another concentration rang@boratory variation can only be seen if the number of
that assumption may not hold. laboratories providing usable data is maximized. Ordinary

6.2.2 Choose IDE Study Design and Protoctlased (if within-laboratory variation must be _alloweq to affect the
possible) on anticipated interlaboratory standard deviatiof€asurement process as happens in routine measurement.
(ILSD) model. Section 7 of Practice D 2777 can be followed!deally, there would be many laboratories, and each measure-
for the study design and protocol. The anticipated form of thénent at each laboratory would be an unsuspecting blind
ILSD model (the relationship between interlaboratory mea/neasurement made by a different analyst using a different
surement standard deviation and true concentration) can help {gualified) measurement system on a different day, in random
choosing an IDE study design. Three models are propose@fder.
herein for the interlaboratory measurement standard deviation 6.2.4.1 As emphasized in Practice D 2777, maximizing the
with respect to true concentration: constant, straight-line (inhumber of participating laboratories is often the most important
creasing), and exponential (increasing). Chemistry, physicdhing that can be done to guarantee a successful study, and
empirical evidence, or informed judgment may make ondhere are several reasons why the number of participating
model more likely than others. However, it may not be possibldaboratories will somewhat exceed the number of laboratories
to anticipate the relationship between standard deviation angroviding a full set of usable data. A minimum of ten
true concentration. participating laboratories is recommended.

6.2.2.1 Select an IDE study design that has enough distinct 6.2.4.2 If possible, the study should be conducted com-
concentrations to assess statistical lack of fit of the models (sg#etely blind, particularly if the method is labor-intensive, as
Draper and Smith(3)). Recommended designs ar@) The  opposed to a highly automated method. That is, not only should
semi-geometric design at five or more true concentrationg, { the analysts not be aware of the true concentrations of the
T,, and so forth}, such as: {0, ID§4, IDEy/2, IDE,, 2 X IDE,, samples they are measuring, but they should not even be aware
4 X IDEy}, where IDE, is an initial estimate of the IDE (such of the fact that they are measuring special, study samples. This
as 10x s, wheres' is the interlaboratory measurement stan-is to minimize the extra care distortion of data so common in
dard deviation at a trace-level, nonzero concentration), ( analytical studies.
equi-spaced design: {0, IDf2, IDE, (3/2)X IDE,, 6.2.4.3 For each laboratory, the maximum number of quali-
2 X IDE, (5/2) X IDEg}, and (c) any other design with at least fied analysts possible should be involved in the study since
five concentrations, provided that the design includes blanks, dhere are variations which may be allowed by the method, may
least one concentration approximately equal t& IDE,, and  be practiced by different analysts, and will be seen in routine
at least one nonzero concentration below }DE analyses.

6.2.2.2 The study concentration levels must either be: 6.2.4.4 For each laboratory, the maximum number of quali-
known (true concentration levels), or knowable, after the factfied measurement systems should be used since there are
A concentration is considered known if reference standards camodel-to-model and instrument-to-instrument differences in
be purchased or constructed and knowable if an accuragquipment and maintenance, as will be seen in routine analy-
determination can be made (for example, the median valuses.
from many laboratories, or results from a recognized labora- 6.2.4.5 For each laboratory, the IDE study should be sched-
tory, such as NIST, using a high-accuracy method). uled to span the maximum possible number of days consistent

6.2.3 Choose Protocet-The protocol should follow Section with holding time constraints since day-to-day changes in
7 of Practice D 2777. It should include design run order andanalytical laboratory environmental conditions, contamination,
details on when the system is to be purged, have extra blank®lvent purity, and other factors can affect measurements, and
run, and so forth. It should take into consideration possiblevill be seen in routine analyses.
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6.3 Conduct the IDE Study, Screen the Data, and Choose a where:g andh are fitted constants. Interlaboratory standard
Model deviation increases exponentially with concentration, resulting
6.3.1 The IDE study should be conducted in accordancén a relative standard deviation that may initially declineTas

with Section 9 of Practice D 2777. Blank correction should notincreases but eventually increasesTascreases. Error can be
be performed by the laboratories, unless the method requireglditive or multiplicative.
this subtraction in order to perform the test. Each laboratory (a) (a) In all cases, it is assumed that 0. A value ofg <
should supply method blank data along with the uncorrecte@ has no practical interpretation and may indicate that a
measurement values, and the study supervisor can determid#ferent ILSD model should be used. Furthermore, it is
whether the reported measurements should be corrected. assumed that) is not underestimated due to censored data
6.3.2 The IDE study data should be screened in accordanegmong measurements of blanks or other low-concentration
with the initial subsections relating to removing data, Sectiorsamples. (Censoring is addressed in 6.2.3.1, 6.3.2, and 6.5.)
10 of Practice D 2777. Skip to 6.5 if, for any concentration,  (b) (b) If h < 0, it must not be statistically significant, and
more than 10 % of the retained measurements are nondetectspgbdel A should be evaluated.

less-thans. _ 6.3.3.2 ILSD Model Identification and Fitting Procedure
6.3.3 Identify and Fit the ILSD ModetThe ILSD model (1) Merge all retained IDE study data (after possible

should be identified, and its coefficients should be estimated byjimination of some data in accordance with 6.3.2).

using the following procedure. See Caulcutt and Bod@) (2) For each true concentratiofi,, compute the adjusted

for more discussion of standard deviation modeling anqpieiaporatory sample standard deviatigpan estimate of the
weighted least squares (WLS) in analytical chemistry. ThiSy,e ynderlying interlaboratory measurement standard devia-

model is an attempt to characterize the unknown (or partly;,, . The adjusted interlaboratory sample standard devia-
known) function between interlaboratory measurement staryq, is the sample standard deviatisp multiplied by the

dard deviation and true concentration= G (). Itis used for a5 correction factog’,, found in Table 1. In this Practice, all
two purposes: to provide weights for the WLS regression 10 fiteferences to computed and fitted values of the interlaborator
the mean recovery model and to provide the interlaboratory, mnje standard deviation refer to adjusted values. Note that a
standard deviation estimates crucial to determining C”t'cagimplifying approximation can be used if the number of
values and the IDE. ... . retained replicates is the same for each spike level; unadjusted

6.3.3.1 Three ILSD models are proposed. The identificationgmpe standard deviations can be sued, and the final IDE can
process considers (fits and evaluates) each model in turn, fropy, multiplied by the adjustment factor (see the example). The
simplest to most complex, until a suitable model is found. Prior|arger the number of replicates, the better the approximation.
knowledge can be combined with empirical results to influence (3) Plots, versusT,.

the selection of a model if a suitable refereed publication can : .
; : . (4) Using ordinary least squares (OLS) (see Caulcutt and
be cited. See Carroll and Ruppé€(®)) for further discussion of Boddy (4)), regresss, on T,, temporarily assuming that a

standard deviation modeling. The model order is as follows: : : . . . : .
. straight-line model is valid. This provides coefficierggndh,
Model A (Constant ILSD Model): in the relationship:

s= g+ error @ s.=g+hxT, +error ®

where: g is a fitted constant. Standard deviation does not
change with concentration, resulting in a relative standarcliLS

ﬁﬂeovézilan (gt?;igi(t:.l:ir:meesl\ll_vgg Ilr\]/lci)rggﬁﬁ-g with slope estimatd, from the OLS regression. If it is less than
‘ 5 %, there is statistically significant slope, and Model A should
s=g+hxT+ error (2 be rejected; proceed to the next step. Secondly, examine the
plot produced in stepc], or a plot of the residuals from the
where: g and h are fitted constants. Standard deviationQLS fit. If obvious systematic curvature is present (for ex-
increases linearly with concentration, resulting in an asympample, quadratic or exponential-like behavior), Model A

(e) Evaluate the reasonableness of Model A (the constant
D model) by doing two things. Note thevalue associated

totically constant relative standard deviationTagcreases. should be rejected; proceed to stdp. (If Model A is not
Model C (Exponential ILSD Model): rejected, skip to 6.3.4.
s=gxexph x T} + error  or 3) (f) Model Ais rejected, due to statistically significant slope.
Compute residuals:
s=g X expfh X T} X error 4 =S~ (@+hXTy (6)

TABLE 1 Bias-Correction Adjustment Factors for Sample Standard Deviations Based on n Measurements (at at particular
concentration) 4

n 2 3 4 5 6 7 8 9 10
a'y, 1.253 1.128 1.085 1.064 1.051 1.042 1.036 1.031 1.028

A For each true concentration T,, the adjusted value s, = a’,,s', should be modeled in place of sample standard deviation s’,. For n> 10, use the formula a’,,= 1 + [4(n
— 1)]"X. See Johnson and Kotz (7).



A8 D 6091 - 03
“afl

Plot r, versusT,. () (a) Using the ILSD model and coefficient estimates

(g) Evaluate the reasonableness of Model B (the straightffom A6.3.3, compute predicted i'nterlaboratory standard devia-
line ILSD model). Examine the plot produced in stép (f  tion, § for each true concentratiofi,:

obvious systematic curvature is present (for example, quadratic ModelB: §, =g+ h X T, (12)
or exponential-like behavior), with a minimum that appears to
be within the concentration range, Model B should be rejected; ModelC: § = g X expth X T} (12)

proceed to stephj. If Model B is not rejected, skip to 6.3.4.

(h) To evaluate the reasonableness of Model C (the (b) (b) Compute weights for WLS:
exponential ILSD model), the model must first be fit. There are - 13
two approaches. The simplest approach is to do OLS regres- Wi = & (13)

sion on the log of the interlaboratory sample standard devia- o )
tions: (c) Note that if this is done using computer software, the

default setting for weights may be different. For example,
instead of supplying the value$, X ? as weights, the software
may require the user to supply valuég) (or (8)° as weights
This corresponds to the multiplicative error assumptionthat are internally transformed by the software.
which is generally a good assumption. The fit will provide (d) (c) Carry out WLS computations analogous to OLS
directly andg’ = In g which is convertedg = exp{g'}. Alter- computations. See Table 2 or Caulcutt and Boddly The
natively, the fit can be done using nonlinear least squaresesult will be coefficient estimatess and b, for the mean
(NLLS), by Newton-Raphson iteration or another method. Thisecovery model, Model R.
approach corresponds to the less-plausible additive error as- (e) (d) There are three approximate approaches to WLS
sumption. In either case, the fit should satisfy two types otommonly practiced but that are not acceptable for this
evaluation. First, the-value for h should be less than 5 %. application. One approach uses the reciprocal squared sample
Secondly, a plot of the residuals, in log form, should bestandard deviations as weights. In this context, since a standard
constructed. Plot, versusT,, where: deviation model is explicitly evaluated and selected, the
fe=Ins —(ng+hxTy ®) predicted value foqis probably more precise t_han a sample
value. The predicted value should be used in place of the
) _ sample standard deviation for weight computation. A second
The plot should show no systematic behavior (for examplegynroach omits the blank measurements, divides through the
curvature). If the fit satisfies both types of evaluation, proceedast of the measurements by the true concentrations, and does

to 6.3.4. Otherwise, a different and possibly more complexy| g using the independent variable 14 the model:
model will have to be used. One possibility is the Rocke and

Lorenzato(6) model, which has:
s~ (g+hxT? (9)

Ins;=Ing+ hXT,+ error

Y/T=aX (1T) + b + error (14)

(f) This is not acceptable because it leads to loss of data and
because the weights so generated implicity assume that
This model has nearly constant (slightly increasing) ILSDinterlaboratory standard deviation is strictly proportional to
for low true concentrations, changing to standard deviatiorirue concentration. The IDE concept and computation rests on
nearly proportional to concentration for higher concentratiorpositive, quantifiable interlaboratory standard deviation for
levels. It can be fit and evaluated using NLLS or maximummeasurements of blanks, and a proportional relationship cannot
likelihood. If there are enough true concentrations, a modehold for arbitrarily small concentrations. The third approach
with more coefficients could be considered, such as quadratiexploits the same approximate but untrue proportional relation-
(strictly increasing with increasing concentration), or evenship to obtain mathematically simpler WLS formulas.
cubic. (9) (e) After fitting, the mean recovery model should be
6.3.4 Fit the Mean Recovery ModelThe mean recovery €valuated for reasonableness and lack of fit. This should be

model is a simple straight line:

ModelR: Y =a+ b X T+ error (10) TABLE 2 Computations to Estimate Straight-Line Model
Coefficients By Means of Least Squares—Ordinary and Weighted
The fitting procedure depends on the model selection from ©Ordinary Least Squares, OLS Weighted Least Squares, WLS
6.3.3. If Model A was selected for ILSD, then OLS can be used P13 . Pl W_T‘/ $
to fit Model R for mean recovery (see Caulcutt and Bo¢ily. ni=y " ==
If a nonconstant ILSD model was selected, such as Model B or y=T= ,571_:21 T, o = ,;1'”’”//-:21 W,
C, then WLS should be used to fit mean recovery. This n B " B
approximately provides the minimum variance unbiased linear Srr= 2 (T T Surr= 2 wi(T;= T?
estimate of the coefficienta and b. The WLS procedure n _ n _
appears in 6.3.4.1. Sw=2 7= D=9 Surv= 2, W(Ti= D=9
. . | =p= | =p=
6.3.4.1 Weighted Least Squares Procedure, Using the Inter- v 7 ot = LS

laboratory Standard Deviation Model
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done by ensuring the following:1) The fit is statistically where: k2 = one-sided, 90 % confidence upper statistical
significant (overallp-value <5 %); 2) The lack of fitp-value  tolerance limit for the 95 % quantile of the normal distribution,
(if available; see Caulcutt and Bod@¥) or Draper and Smith based om observations (see Table 3).

(3)) is not statistically significant (lack of fit p-value > 5 %3)( 6.4.4 If either the straight-line ILSD model (Model B) or the
A plot of the residuals should show no obvious systematicexponential ILSD model (Model C) was used, complieby
curvature (for example, quadratic or exponential-like behavrecursively solving:

ior). If the mean recovery model fails the evaluation, then the LD.,, = R (kL X &0) + k2 X G(LD,) + a)
study supervisor will have to determine if only a subset of the
data should be analyzed (perhaps the model fails for the higher = [k1 X §0) + k2 X G(LD;)]/b (18)

concentration(s)), or if more data are needed.

6.4 Compute the IDE-The IDE is computed using the  where: G(LD;) is the predicted interlaboratory standard
ILSD model to estimate interlaboratory standard deviation atleviation at true concentratioD;. Therefore, the recursive
true concentration =0 and at the IDE, and using the meahD formulas are as follows:
recovery model to transform measured concentrations to true Model B: LD, , ; = [K1 X 0) + k2 X (g + h X LD)Jb ~ (19)
concentrations and vice versa. The computation has three
stages, where the following are computed in succession: odelc: LD, , , = [kL X ¥0) + k2 X (g X explh X LD;})]/b
YC=recovery critical value.C = true concentration critical
value, and_D = IDE. Additionally, one can computéD = the

expected measurement at the IDE. If a different, nonconstant ILSD model, such as the Rocke
6.4.1 Compute the recovery critical value: and Lorenzato modé€b) is used, the recursive formula fab
YC=KLX3+a (15) would take the general form of (Eq 18).
6.4.4.1 Areasonable initial estimate foD is:
where: LD, =2 X LC, or (21)
kL = one-sided, 90 % confidence upper statistical toler-

ance limit (also known as the one-sided statistical LD, = LC + k2 X §(0)/b (22)

tolerance interval) for the 99 % quantile of the ) _ _ ) )
normal distribution), based on n observations (See For each iteration, the current estimate.&ris plugged Into

Table 2), the right-hand side of the recursive formula, producing a new
n = total number of measurements retained in the IDE estimate forLD. Iterations should continue until the relative
study after 6.3.2, difference between successivB estimates is < 1 %. TheD
§0) = G (0), the predicted interlaboratory standard devia-is the true concentration about which with (approximately)

tion of the measurement of a blank sample. G 90 % confidence, a single sample measurement will produce a
(0) = g for ILSD Model B or C, but for Model A, G reported measurement that 95 % of the time will exc¥ed

(0) should be set to the root mean squared error 6.4.5 The result iSDE = LD. The IDE is the true concen-
(RMSE) from the recovery model fit, tration at which the measurement of a single sample will

a = estimated mean recovery intercept, and
YC = measurement value that with (approximately) 90 %

confidence will be exceeded no more than 1 % of TABLE 3 90 %-Confidence Upper, One-sided Statistical Tolerance

the time when a blank sample is measured Limit Factors for Computing the 99 %/95 % IDE A

. L. . Number of Observations . .
6.4.2 Computd.C, the true concentration critical value, by Retained, n 99 % Quantile, k1 95 % Quantile, k2
inverting the mean recovery formula with valye&: 5 167 2.40
1 _ B 10 3.53 257
LC=R YO = (YC—a)b (16) 15 301 533
20 3.05 2.21
25 2.95 2.13

where: 30 2.88 2.08
R = inverse prediction function that transforms a mea- 35 2.83 2.04

sured concentration into the true concentration, jg ;;g i'g;

based on mean recovery, modeled by a straight line, 50 2.74 1.97

d 55 2.71 1.95

an
LC = true concentration that has an expected recovery that o s Lo

with (approximately) 90 % confidence, will be ex- 70 2.66 1.01

ceeded no more than 1 % of the time when a blank 75 2.65 1.90

: 80 2.64 1.89
sample is measured. % 560 187
6.4.3 If the constant ILSD model (Model A) was used, 100 2.60 1.86

. 150 2.55 1.82

CompUte' 200 2.51 1.79
LD =LC + k2 X §0)/b (17) A Computed using STINT software (93/12/3 version), by Prof. W. Meeker and J.

Chow of lowa State University.
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exceedYC 95 % of the time (resulting in a detection), and 8.2.3 The results of the analysis have been appropriately
simultaneously, the measurement of a single blank sample wilised, including possible rejection of assumptions necessary to
exceedyConly 1 % of the time, both with approximately 90 % compute an IDE.

confidence: 8.3 A statement of the review and the results should

YD=a+bXLD (23)  accompany the report. Reviewer(s) should be qualified in one
or more of the following areasi) applied statistics and?)
is the expected measurement value for a sample at trugnalytical chemistry.
concentratioriLD.
6.5 Nontrivial Amount of Censored Data10 % for at least 9. Rationale
one true concentration of data reported as nondetects Or g 1 The basic rationale for the 99 %/95 %
less-thans. Despite the attempt in 6.2.3.1 to reduce or eliminagj

reported nondetects or less-thans, they may still occur at a lev ethod, this figure shows single-laboratory variation in mea-

that disrupts the analysis of the data presented in 6.3 and 6'sUrements of both blank samples and samples at true
If this happens, the study supervisor should contact laborato- P P

ries with such measurements to see whether the uncensorgﬁncentraﬂon :TO’. assuming perfect recovery. The_ variation
data can be extracted from data archives. If this is not & °Wn IS acc_:ordlng to the .normal distribution with "”.OW.”
sufficient remedy, serious consideration should be given tgnean (z_ero bias) and k_nownmterlaboratqry standa_rd deviation.
augmenting the IDE study with measurements of samples ahe critical valueL.C*, is used to dgtermme detection. .It can
new and different concentrations (generally, higher). A thirdP® moved to decrease= the probability of a false detection at
and final option is to follow the procedure in 6.5.1 throughthe price of increasing = the probability of a false nondetec-
6.5.4. It should be noted, however, that the procedure providel{on, or vice versa. Given an acceptable valuedfpa value for
no assurance of the probability of false positives, and the IDELC* can be found. Given, also, an acceptable valuefpa
so computed should always be identified with such a qualifieisuitable value forT, can be found.T, is then a single-
6.5.1 Use the Rocke and Lorenzato Mo@@) as the ILSD  laboratory detection limit at which reliable detection can occur
model and fit it using NLLS with only data for concentrations by definition of acceptablex and . Following this IDE
that did not have more than 10 % nondetects or less-thans. procedure, this conceptC and LD) can be extended to a
6.5.2 Use the same data as in 6.5.1 to fit Model R (thénethod’s interlaboratory detection capability estimation.
straight-line mean recovery model) using WLS. 9.2 There are several real-world complications to Fig. 1. See
6.5.3 If less than half of all blank sample results are reported/laddalone et al(7) and see Gibbong8). Some of these
as nondetect or less-thans, proceed with 6.4.2 through 6.4.6pmplications are listed with their remedies:

using the models. 9.2.1 Recovery is not perfect; the relationship between
6.5.4 If half or more of all blank sample results are reportedmeasured values and true concentrations cannot be assumed to

as nondetect or less-thans, use linear interpolation amonge trivial. There is bias between true and measured values. It
low-concentration samples to estimate the true concentratioghn and should be modeled, typically by a straight line.

; i 0 O
that WOUId have a detection _probablllty of 50 %. This is the 9.2.2 Variation is introduced by different laboratories, ana-
effective LC. For example, if nondetect or less-than was

reported for 70 % of blank samples and for 20 % of sample%ys_ts’ m(_)dels and pieces of equip_me_nt, environment_al factors,
with T =3 ppb, then: atitude in a test met_ho_d, contamination, carry-over |_nf_Iuence,
and other factors. It is intractable to model these individually,
LC =3 (70~ 50)/(70 - 20) = 1.2 ppb (24) " put their collective contributions towards measurement inter-
laboratory standard deviation can be observed if it is part of
Proceed with 6.4.4 through 6.4.5. how a study is designed and conducted.

9.2.3 The interlaboratory standard deviation of measure-
ments (quantified by the standard deviation of the normal
7.1 The data analysis for eliminating data is given in Sectiordistribution) is unknown. Standard deviations must be esti-

IDE is contained
Currie ((1)), and is shown in Fig. 1. For a selected test

7. Data Analysis

10 of Practice D 2777. mated with finite sample sizes, and statistical tolerance limits
7.2 The data analysis involved in computing an IDE ismust be used to obtain high confidence of an estimate of a
shown by example in Section 10. distribution quantile.

9.2.4 Interlaboratory standard deviation of measurements
may change with true concentration, possibly due to the

8.1 The analysis report should be structured as in Annex Alphysical principle of the test method. Short of severely

8.2 The report should be given a second-party review tdestricting the concentration range for a study, this requires an
verify that: empirical ILSD model to enable prediction of the interlabora-

8.2.1 The data transcription and reporting have been cofory standard deviation of measurements at different true
rectly performed, concentrations.

8.2.2 The analysis of the data has been correctly performed, 9.3 A more realistic picture of analytical measurement is
and shown in Fig. 3 (though 11.2.2 cannot be shown).

8. Report
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Recovery
Y = Measured Curve
Concentration (intercept=0,
i slope=1) -

Prob{false det.}
* o

B k Prob{false
non-det. of TO }=B

YC

>
e T = True Concentration
0 LD=IDE
FIG. 3 Reliable Detection at the IDE (Realistic Case)
10. Example (Straight-Line ILSD Model) 10.1.2 Interlaboratory sample standard deviations at each

10.1 Identify and Fit the ILSD ModekTen laboratories true concentration are computed, and are shown in Table 4.
participated in a (synthesized) IDE study where single mea- 10.1.3 A plot of interlaboratory sample standard deviation
surements were made at each of five concentrations, includinggrsus true concentration is shown in Fig. 5. There is increas-
blanks: T, = {0, 0.25, 0.50, 1, 2} ppb. Considerations of 6.2, ing qualitative evidence of an increase in standard deviation
6.3.1, and 6.3.2 are not described in Section 10. The proceduvéth increasing concentration.
described in 6.3.3 is followed, using the adjusted-IDE approxi- 10.1.4 A straight-line regression (OLS) is conducted of the
mation of 6.3.3.2, assuming that no data were eliminated iinterlaboratory sample standard deviatiogs,versusT,. The
accordance with 6.3.2. results are shown in Table 5, and the fit is shown in Fig. 5. The

10.1.1 The reported measurements are shown in Table 4stimates are intercegt= 1.0891 and slopé = 0.95682.

These values are also shown in Fig. 4. The straight-line 10.1.5 Thep-value associated with the slope estimaieis
recovery model appears to be plausible, and the data appeart®8 % < 5 %, so Model A, the constant ILSD model, is
have interlaboratory measurement standard deviation that inejected.

creases with concentration. Note that for this example, high 10.1.6 The residuals from the straight-line interlaboratory

blank measurements and an unusually high recovery slopgandard deviation fit are computed as follows and are dis-
were used for the purposes of illustration (to distinguishplayed in Fig. 6:

measured values from true values). In practice, the recovery
curve intercept and slope would typically be closer to 0 and 1,
respectively.

M =S — (1.089+ 0.957x T,) (25)

10.1.7 There is no evidence of systematic curvature, so the

TABLE 4 Reoorted M s and e Statistics 1 analysis proceeds in accordance with 6.3.4.
eporte easurerﬂ)eg Ss:;éy omputed Staistics from 10.2 Fit the Mean Recovery ModelSince the interlabora-

tory standard deviation has been shown to be nonconstant with

True Reported Sample Predicted ) . . ¥
Concentration, Me';surement, Y, one Stanzard Standard wﬁghts for respect to true concentrguon, WLS is u;ed to fit th.e .mean

T PPb per Laboratory, ppb ~ Deviation  Deviation recovery model, and the fitted ILSD model is used explicitly to

0.0 1.41, 3.94, 2.22, 3.48, 1.137 1.089 0.843 estimate the ILSD at arbitrary true concentrations. The proce-
1'33' g-gé 2.17, 2.36, dure described in 6.3.4 is followed.

0.25 410, 351, 4.07, 4.34, 1.336 1.328 0.567 10.2.1 The estimate of intercep, and the estimate of
454, 2.76, 2.03, 4.13, slope,h, in the straight-line ILSD model, are used to predict the
6.06, 6.47 ; i &

0.50 397 734, 6.41 6.25, 1255 1568 0.407 ILSD at eac_h true concentratiof,. These predicted valueg,
6.38, 7.64. 4.67. 6.74, are shown in Table 4 and are assumed to be closer to the true
4.38, 6.48 ILSDs, g, than are the sample ILSDs,

1.0 7.54,7.68, 8.38, 7.14, 2.406 2.046 0.239 . .
312, 10.97, 1115, 10.2.2 Weights are computed, based on the predicted
10.44, 9.73, 7.27 ILSDs:

2.0 8.20, 13.97, 12.88, 2.900 3.003 0.111 N
18.31, 16.47, 16.06, Wi = (8) (26)
12,56, 14.21, 13.96,
17.37

They are shown in Table 4.
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20

meas. 1

conc.
15 7

0 .25 .5 .75 1 1.25 1.5 1.75 2 2.25

T= true conc.
FIG. 4 Reported Measurements versus True Concentration, One Measurement per Laboratory at Each Concentration (ppb)

3.0 TABLE 5 Results of Straight-Line Fit of s, versus T, by OLS
° Linear Fit
Standard Deviation (Y) = 1.0891 + 0.95682 T
Standard Deviation (Y)= g + h T
2.5 . Summary of Fit
o RSquare 0.904996
5 RSquare Adj 0.873329
8 2.07 Analysis of Variance
g Sum of
n Source df Squares Mean Square F Ratio
Model 1 2.2887587 2.28876 28.5778
1.5 -1 Error 3 0.2402664 0.08009  Prob>F
C total 4 2.5290251 0.0128
- Parameter Estimates
Term Estimate Standard Error T-Ratio Prob> T
1.0 T T T T T g (intercept) 1.0891019 0.184493 5.90 0.0097
’ h (slope) 0.9568195 0.178985 5.35 0.0128

-0.5 .0 .5 1.0 1.5 2.0 2.5
T= true conc.

FIG. 5 Sample Standard Deviation (YY) versus True Concentration
(sk versus Tp)

A Key results are underlined.

YC=kLX§0) +a=274X1.089+2.73=5.71 (28)

10.2.3 The WLS is carried out to estimate the coefficieats, where:

andb, of the straight-line mean recovery relationship: k1 = 2.74 =the one-sided statistical tolerance limit for
ModelR: Y=a+ b X T + error @7 90 % confidence of the 99 % quantile, based on the

normal distribution assumption and n = 50 observa-

The results of WLS are shown in Fig. 7 and in Table 6. ¥0) = tg;o:nsl,.OSg is the predicted ILSD at T=0 (blank

10.2.4 The fit is evaluated as follows1)(The overall samples), and

p-value is <0.0001 < 5 %) The lack of fitp-value is 0.8537 g = 2.73 = intercept from the mean recovery curve (re-

> 5%; (3) Fig. 8 shows a plot of the residuals versus true call that this is set much higher than 0 for this
concentration and shows no evidence of systematic curvature. example to clearly distinguish measured values
Therefore, the straight-line mean recovery fit is acceptable. from true values in the plots and tables; see 10.1.1).

10.3 Compute the IDE-Having obtained acceptable fits of
a ILSD model and a mean recovery model, the IDE can be 10.3.2 The true concentration critical value is computed and

computed. The procedure described in 6.4 is followed. is shown in Fig. 7:
10.3.1 The recovery critical value is computed and is shown LC = (YC— a)/b = (5.71— 2.73/5.87 = 0.51 ppb (29)
in Fig. 7:

10
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04 T -
Residual

02 T

0.0 T

-02 T+

] [ ]

-0.4 | i | | |
0 5 1.0 15 2.0

T

FIG. 6 Residuals from Straight-Line Model of Interlaboratory Measurement Standard Deviation versus True Concentration

20
Y=
meas. |
conc.
16 T
3
YD—=
: :
H
YC
5
3
0 T T T T T T ' T J T T T T T T T T T
-0.25 (o] .25 LC .75 1 LD=IDE 1.5 1.75 2 2.25
T= true conc.
FIG. 7 Weighted Least Squares Fit of Mean Recovery Relationship, with IDE and Critical Limits
where:b = 5.87 = slope of the recovery curve (recall that this =1154 (31)
is set much higher than 1 for this example to clearly distinguish
measured values from true values in the plots and tables (see LD, =0.511+ 1.97x (1.089+ 0.957x 1.154/5.87 = 1.245
(32)

section 12.1.1).
10.3.3 The IDE (also called theD, in the tradition of
Currie (1) is computed recursively. An initial value is set as  gic., until convergence is achieved at about the eighth

follows: iteration,LD, ~ LDg= 1.287. Thereford DE = LD X (adjust-
LD, = LC + k2 X 0)/b ment factor from Table 1) =1.28% 1.028~ 1.3 ppb, as is
shown in Fig. 7. Note thatD > 2 X LC =1.02.
zgg%z 1.97>x 1.089/5.87 (30) 10.4 Based on this study, there is (approximately) 90 %

confidence that the analyte can be detected at least 95 % of the

) L i time at 1.3 ppb, and simultaneously that blank samples will
where:k2=1.97 = one-sided statistical tolerance interval for .os it in nondetect no more than 1 % of the time.

90 % confidence of the 95 % quantile, based on the normal

distribution assumption andi =50 observations: Then the  Note 3—In this example the calculated IDE is less than most calcu-

recursive function is solved, iteratively, as follows: lated standard deviation values in Table 4. This is because the data used
for the example reflect high blank values and an unusually high recovery

LD, = R (kL X §0) + k2 X G(LD) + a) slope. This example serves to illustrate the utility of the practice even
when such anomalous results are reported.

10.4.1 Also shown in Fig. 7 is the expected measurement
=0.511+ 1.97 X (1.089+ 0.957x 0.874/5.87 value at the IDe concentration:

=LC + k2 X (g+ h X LDy)/b

11
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TABLE 6 Numerical Results of WLS to Fit the Straight-line Mean
Recovery Relationship Between Measured Concentration and 4T .
True Concentration .
- - Residual Y .
Response: Y-Linear Fit . H
Y = 2.729549 + 5.8711952 T 2 L . .
Y= a + b T . i .
Summary of Fit 0 3 :
L ] " -
RSquare 0.794662 H . =
RSquare Adj 0.790384 . H .
Root Mean Square 0.982227 4 * . :
Error -2 .
Lack of Fit
Sum of Mean -4 —+
Source df Squares Square F Ratio
Lack of fit 3 0.789330  0.26311 0.2601
Pure error 45 45519596  1.01155 Prob>F .
Total error 48 46.308925 0.8537 6 T .
Parameter Estimates
Term Estimate  Standard T Ratio Prob> T -8 i t i t i t i ¢ i
Error
a (intercept) 2.729549 0.264938  10.30 <0.0001 0 5 1.0 1.5 20
b (slope) 5.8711952 0.430774 13.63 <0.0001 T=True conc.
Analysis of Variance FIG. 8 Plot of Residuals from WLS Fit of Straight-line Mean
Recovery Relationship versus True Concentration
Sum of Mean
Source df Squares Square F Ratio
Model 1 179.21612 179.216 185.7606
Error 48 46.30893 0.965 Prob>F
C total 49 22552504 <0.0001 11. Keywords

YD=R(LD)=a+bXxLD=273+5.87x1287=10.3

11.1 critical limit; detection; detection limit; false detection;
false nondetection; false positive; matrix effects; statistical

(33) tolerance limit; true detection; true nondetection

ANNEX

(Mandatory Information)

Al. ANNOTATED OUTLINE FOR ANALYSIS REPORTS

Al1.1 This outline presents the information to be included in  A1.4 99 %/95 % Interlaboratory Detection Estimate Re-
the reports of analysis performed in accordance with thigort.

practice.

Al.2 Single-Laboratory IDE Repart

Al1.2.1 Identification of laboratory, identification of analyti-

Al.4.1 Data screening results, individual values and labo-
ratories omitted from further analysis, and missing values.

Al.4.2 The ILSD model selected.

cal method, analyte(s), matrix (or matrices), sample properties A1.4.3 Coefficient estimates for the ILSD model and mean

(for example, volume).

recovery model.

Al1.3 Any anomalies in the study, including QA/QC sample

results.

12
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